Easily find issues by searching: #<Issue ID>
Example: #1832
Easily find members by searching in: <username>, <first name> and <last name>.
Example: Search smith, will return results smith and adamsmith
These scripts, while not fitting into the text of this document, do illustrate some interesting shell programming techniques. Some are useful, too. Have fun analyzing and running them.
Example A-1. mailformat: Formatting an e-mail message
#!/bin/bash # mail-format.sh (ver. 1.1): Format e-mail messages. # Gets rid of carets, tabs, and also folds excessively long lines. # ================================================================= # Standard Check for Script Argument(s) ARGS=1 E_BADARGS=65 E_NOFILE=66 if [ $# -ne $ARGS ] # Correct number of arguments passed to script? then echo "Usage: `basename $0` filename" exit $E_BADARGS fi if [ -f "$1" ] # Check if file exists. then file_name=$1 else echo "File \"$1\" does not exist." exit $E_NOFILE fi # ================================================================= MAXWIDTH=70 # Width to fold excessively long lines to. # --------------------------------- # A variable can hold a sed script. sedscript='s/^>// s/^ *>// s/^ *// s/ *//' # --------------------------------- # Delete carets and tabs at beginning of lines, #+ then fold lines to $MAXWIDTH characters. sed "$sedscript" $1 | fold -s --width=$MAXWIDTH # -s option to "fold" #+ breaks lines at whitespace, if possible. # This script was inspired by an article in a well-known trade journal #+ extolling a 164K MS Windows utility with similar functionality. # # An nice set of text processing utilities and an efficient #+ scripting language provide an alternative to bloated executables. exit
Example A-2. rn: A simple-minded file renaming utility
This script is a modification of Example 16-22.
#! /bin/bash # rn.sh # Very simpleminded filename "rename" utility (based on "lowercase.sh"). # # The "ren" utility, by Vladimir Lanin ([email protected]), #+ does a much better job of this. ARGS=2 E_BADARGS=85 ONE=1 # For getting singular/plural right (see below). if [ $# -ne "$ARGS" ] then echo "Usage: `basename $0` old-pattern new-pattern" # As in "rn gif jpg", which renames all gif files in working directory to jpg. exit $E_BADARGS fi number=0 # Keeps track of how many files actually renamed. for filename in *$1* #Traverse all matching files in directory. do if [ -f "$filename" ] # If finds match... then fname=`basename $filename` # Strip off path. n=`echo $fname | sed -e "s/$1/$2/"` # Substitute new for old in filename. mv $fname $n # Rename. let "number += 1" fi done if [ "$number" -eq "$ONE" ] # For correct grammar. then echo "$number file renamed." else echo "$number files renamed." fi exit $? # Exercises: # --------- # What types of files will this not work on? # How can this be fixed?
Example A-3. blank-rename: Renames filenames containing blanks
This is an even simpler-minded version of previous script.
#! /bin/bash # blank-rename.sh # # Substitutes underscores for blanks in all the filenames in a directory. ONE=1 # For getting singular/plural right (see below). number=0 # Keeps track of how many files actually renamed. FOUND=0 # Successful return value. for filename in * #Traverse all files in directory. do echo "$filename" | grep -q " " # Check whether filename if [ $? -eq $FOUND ] #+ contains space(s). then fname=$filename # Yes, this filename needs work. n=`echo $fname | sed -e "s/ /_/g"` # Substitute underscore for blank. mv "$fname" "$n" # Do the actual renaming. let "number += 1" fi done if [ "$number" -eq "$ONE" ] # For correct grammar. then echo "$number file renamed." else echo "$number files renamed." fi exit 0
Example A-4. encryptedpw: Uploading to an ftp site, using a locally encrypted password
#!/bin/bash # Example "ex72.sh" modified to use encrypted password. # Note that this is still rather insecure, #+ since the decrypted password is sent in the clear. # Use something like "ssh" if this is a concern. E_BADARGS=85 if [ -z "$1" ] then echo "Usage: `basename $0` filename" exit $E_BADARGS fi Username=bozo # Change to suit. pword=/home/bozo/secret/password_encrypted.file # File containing encrypted password. Filename=`basename $1` # Strips pathname out of file name. Server="XXX" Directory="YYY" # Change above to actual server name & directory. Password=`cruft <$pword` # Decrypt password. # Uses the author's own "cruft" file encryption package, #+ based on the classic "onetime pad" algorithm, #+ and obtainable from: #+ Primary-site: ftp://ibiblio.org/pub/Linux/utils/file #+ cruft-0.2.tar.gz [16k] ftp -n $Server <<End-Of-Session user $Username $Password binary bell cd $Directory put $Filename bye End-Of-Session # -n option to "ftp" disables auto-logon. # Note that "bell" rings 'bell' after each file transfer. exit 0
Example A-5. copy-cd: Copying a data CD
#!/bin/bash # copy-cd.sh: copying a data CD CDROM=/dev/cdrom # CD ROM device OF=/home/bozo/projects/cdimage.iso # output file # /xxxx/xxxxxxxx/ Change to suit your system. BLOCKSIZE=2048 # SPEED=10 # If unspecified, uses max spd. # DEVICE=/dev/cdrom older version. DEVICE="1,0,0" echo; echo "Insert source CD, but do *not* mount it." echo "Press ENTER when ready. " read ready # Wait for input, $ready not used. echo; echo "Copying the source CD to $OF." echo "This may take a while. Please be patient." dd if=$CDROM of=$OF bs=$BLOCKSIZE # Raw device copy. echo; echo "Remove data CD." echo "Insert blank CDR." echo "Press ENTER when ready. " read ready # Wait for input, $ready not used. echo "Copying $OF to CDR." # cdrecord -v -isosize speed=$SPEED dev=$DEVICE $OF # Old version. wodim -v -isosize dev=$DEVICE $OF # Uses Joerg Schilling's "cdrecord" package (see its docs). # http://www.fokus.gmd.de/nthp/employees/schilling/cdrecord.html # Newer Linux distros may use "wodim" rather than "cdrecord" ... echo; echo "Done copying $OF to CDR on device $CDROM." echo "Do you want to erase the image file (y/n)? " # Probably a huge file. read answer case "$answer" in [yY]) rm -f $OF echo "$OF erased." ;; *) echo "$OF not erased.";; esac echo # Exercise: # Change the above "case" statement to also accept "yes" and "Yes" as input. exit 0
Example A-6. Collatz series
#!/bin/bash # collatz.sh # The notorious "hailstone" or Collatz series. # ------------------------------------------- # 1) Get the integer "seed" from the command-line. # 2) NUMBER <-- seed # 3) Print NUMBER. # 4) If NUMBER is even, divide by 2, or # 5)+ if odd, multiply by 3 and add 1. # 6) NUMBER <-- result # 7) Loop back to step 3 (for specified number of iterations). # # The theory is that every such sequence, #+ no matter how large the initial value, #+ eventually settles down to repeating "4,2,1..." cycles, #+ even after fluctuating through a wide range of values. # # This is an instance of an "iterate," #+ an operation that feeds its output back into its input. # Sometimes the result is a "chaotic" series. MAX_ITERATIONS=200 # For large seed numbers (>32000), try increasing MAX_ITERATIONS. h=${1:-$$} # Seed. # Use $PID as seed, #+ if not specified as command-line arg. echo echo "C($h) -*- $MAX_ITERATIONS Iterations" echo for ((i=1; i<=MAX_ITERATIONS; i++)) do # echo -n "$h " # ^^^ # tab # printf does it better ... COLWIDTH=%7d printf $COLWIDTH $h let "remainder = h % 2" if [ "$remainder" -eq 0 ] # Even? then let "h /= 2" # Divide by 2. else let "h = h*3 + 1" # Multiply by 3 and add 1. fi COLUMNS=10 # Output 10 values per line. let "line_break = i % $COLUMNS" if [ "$line_break" -eq 0 ] then echo fi done echo # For more information on this strange mathematical function, #+ see _Computers, Pattern, Chaos, and Beauty_, by Pickover, p. 185 ff., #+ as listed in the bibliography. exit 0
Example A-7. days-between: Days between two dates
#!/bin/bash # days-between.sh: Number of days between two dates. # Usage: ./days-between.sh [M]M/[D]D/YYYY [M]M/[D]D/YYYY # # Note: Script modified to account for changes in Bash, v. 2.05b +, #+ that closed the loophole permitting large negative #+ integer return values. ARGS=2 # Two command-line parameters expected. E_PARAM_ERR=85 # Param error. REFYR=1600 # Reference year. CENTURY=100 DIY=365 ADJ_DIY=367 # Adjusted for leap year + fraction. MIY=12 DIM=31 LEAPCYCLE=4 MAXRETVAL=255 # Largest permissible #+ positive return value from a function. diff= # Declare global variable for date difference. value= # Declare global variable for absolute value. day= # Declare globals for day, month, year. month= year= Param_Error () # Command-line parameters wrong. { echo "Usage: `basename $0` [M]M/[D]D/YYYY [M]M/[D]D/YYYY" echo " (date must be after 1/3/1600)" exit $E_PARAM_ERR } Parse_Date () # Parse date from command-line params. { month=${1%%/**} dm=${1%/**} # Day and month. day=${dm#*/} let "year = `basename $1`" # Not a filename, but works just the same. } check_date () # Checks for invalid date(s) passed. { [ "$day" -gt "$DIM" ] || [ "$month" -gt "$MIY" ] || [ "$year" -lt "$REFYR" ] && Param_Error # Exit script on bad value(s). # Uses or-list / and-list. # # Exercise: Implement more rigorous date checking. } strip_leading_zero () # Better to strip possible leading zero(s) { #+ from day and/or month return ${1#0} #+ since otherwise Bash will interpret them } #+ as octal values (POSIX.2, sect 2.9.2.1). day_index () # Gauss' Formula: { # Days from March 1, 1600 to date passed as param. # ^^^^^^^^^^^^^ day=$1 month=$2 year=$3 let "month = $month - 2" if [ "$month" -le 0 ] then let "month += 12" let "year -= 1" fi let "year -= $REFYR" let "indexyr = $year / $CENTURY" let "Days = $DIY*$year + $year/$LEAPCYCLE - $indexyr \ + $indexyr/$LEAPCYCLE + $ADJ_DIY*$month/$MIY + $day - $DIM" # For an in-depth explanation of this algorithm, see #+ http://weblogs.asp.net/pgreborio/archive/2005/01/06/347968.aspx echo $Days } calculate_difference () # Difference between two day indices. { let "diff = $1 - $2" # Global variable. } abs () # Absolute value { # Uses global "value" variable. if [ "$1" -lt 0 ] # If negative then #+ then let "value = 0 - $1" #+ change sign, else #+ else let "value = $1" #+ leave it alone. fi } if [ $# -ne "$ARGS" ] # Require two command-line params. then Param_Error fi Parse_Date $1 check_date $day $month $year # See if valid date. strip_leading_zero $day # Remove any leading zeroes day=$? #+ on day and/or month. strip_leading_zero $month month=$? let "date1 = `day_index $day $month $year`" Parse_Date $2 check_date $day $month $year strip_leading_zero $day day=$? strip_leading_zero $month month=$? date2=$(day_index $day $month $year) # Command substitution. calculate_difference $date1 $date2 abs $diff # Make sure it's positive. diff=$value echo $diff exit 0 # Exercise: # -------- # If given only one command-line parameter, have the script #+ use today's date as the second. # Compare this script with #+ the implementation of Gauss' Formula in a C program at #+ http://buschencrew.hypermart.net/software/datedif
Example A-8. Making a dictionary
#!/bin/bash # makedict.sh [make dictionary] # Modification of /usr/sbin/mkdict (/usr/sbin/cracklib-forman) script. # Original script copyright 1993, by Alec Muffett. # # This modified script included in this document in a manner #+ consistent with the "LICENSE" document of the "Crack" package #+ that the original script is a part of. # This script processes text files to produce a sorted list #+ of words found in the files. # This may be useful for compiling dictionaries #+ and for other lexicographic purposes. E_BADARGS=65 if [ ! -r "$1" ] # Need at least one then #+ valid file argument. echo "Usage: $0 files-to-process" exit $E_BADARGS fi # SORT="sort" # No longer necessary to define #+ options to sort. Changed from #+ original script. cat $* | # Contents of specified files to stdout. tr A-Z a-z | # Convert to lowercase. tr ' ' '\012' | # New: change spaces to newlines. # tr -cd '\012[a-z][0-9]' | # Get rid of everything #+ non-alphanumeric (in orig. script). tr -c '\012a-z' '\012' | # Rather than deleting non-alpha #+ chars, change them to newlines. sort | # $SORT options unnecessary now. uniq | # Remove duplicates. grep -v '^#' | # Delete lines starting with hashmark. grep -v '^$' # Delete blank lines. exit 0
Example A-9. Soundex conversion
#!/bin/bash # soundex.sh: Calculate "soundex" code for names # ======================================================= # Soundex script # by # Mendel Cooper # [email protected] # reldate: 23 January, 2002 # # Placed in the Public Domain. # # A slightly different version of this script appeared in #+ Ed Schaefer's July, 2002 "Shell Corner" column #+ in "Unix Review" on-line, #+ http://www.unixreview.com/documents/uni1026336632258/ # ======================================================= ARGCOUNT=1 # Need name as argument. E_WRONGARGS=90 if [ $# -ne "$ARGCOUNT" ] then echo "Usage: `basename $0` name" exit $E_WRONGARGS fi assign_value () # Assigns numerical value { #+ to letters of name. val1=bfpv # 'b,f,p,v' = 1 val2=cgjkqsxz # 'c,g,j,k,q,s,x,z' = 2 val3=dt # etc. val4=l val5=mn val6=r # Exceptionally clever use of 'tr' follows. # Try to figure out what is going on here. value=$( echo "$1" \ | tr -d wh \ | tr $val1 1 | tr $val2 2 | tr $val3 3 \ | tr $val4 4 | tr $val5 5 | tr $val6 6 \ | tr -s 123456 \ | tr -d aeiouy ) # Assign letter values. # Remove duplicate numbers, except when separated by vowels. # Ignore vowels, except as separators, so delete them last. # Ignore 'w' and 'h', even as separators, so delete them first. # # The above command substitution lays more pipe than a plumber <g>. } input_name="$1" echo echo "Name = $input_name" # Change all characters of name input to lowercase. # ------------------------------------------------ name=$( echo $input_name | tr A-Z a-z ) # ------------------------------------------------ # Just in case argument to script is mixed case. # Prefix of soundex code: first letter of name. # -------------------------------------------- char_pos=0 # Initialize character position. prefix0=${name:$char_pos:1} prefix=`echo $prefix0 | tr a-z A-Z` # Uppercase 1st letter of soundex. let "char_pos += 1" # Bump character position to 2nd letter of name. name1=${name:$char_pos} # ++++++++++++++++++++++++++ Exception Patch ++++++++++++++++++++++++++++++ # Now, we run both the input name and the name shifted one char #+ to the right through the value-assigning function. # If we get the same value out, that means that the first two characters #+ of the name have the same value assigned, and that one should cancel. # However, we also need to test whether the first letter of the name #+ is a vowel or 'w' or 'h', because otherwise this would bollix things up. char1=`echo $prefix | tr A-Z a-z` # First letter of name, lowercased. assign_value $name s1=$value assign_value $name1 s2=$value assign_value $char1 s3=$value s3=9$s3 # If first letter of name is a vowel #+ or 'w' or 'h', #+ then its "value" will be null (unset). #+ Therefore, set it to 9, an otherwise #+ unused value, which can be tested for. if [[ "$s1" -ne "$s2" || "$s3" -eq 9 ]] then suffix=$s2 else suffix=${s2:$char_pos} fi # ++++++++++++++++++++++ end Exception Patch ++++++++++++++++++++++++++++++ padding=000 # Use at most 3 zeroes to pad. soun=$prefix$suffix$padding # Pad with zeroes. MAXLEN=4 # Truncate to maximum of 4 chars. soundex=${soun:0:$MAXLEN} echo "Soundex = $soundex" echo # The soundex code is a method of indexing and classifying names #+ by grouping together the ones that sound alike. # The soundex code for a given name is the first letter of the name, #+ followed by a calculated three-number code. # Similar sounding names should have almost the same soundex codes. # Examples: # Smith and Smythe both have a "S-530" soundex. # Harrison = H-625 # Hargison = H-622 # Harriman = H-655 # This works out fairly well in practice, but there are numerous anomalies. # # # The U.S. Census and certain other governmental agencies use soundex, # as do genealogical researchers. # # For more information, #+ see the "National Archives and Records Administration home page", #+ http://www.nara.gov/genealogy/soundex/soundex.html # Exercise: # -------- # Simplify the "Exception Patch" section of this script. exit 0
Example A-10. Game of Life
#!/bin/bash # life.sh: "Life in the Slow Lane" # Author: Mendel Cooper # License: GPL3 # Version 0.2: Patched by Daniel Albers #+ to allow non-square grids as input. # Version 0.2.1: Added 2-second delay between generations. # ##################################################################### # # This is the Bash script version of John Conway's "Game of Life". # # "Life" is a simple implementation of cellular automata. # # --------------------------------------------------------------------- # # On a rectangular grid, let each "cell" be either "living" or "dead." # # Designate a living cell with a dot, and a dead one with a blank space.# # Begin with an arbitrarily drawn dot-and-blank grid, # #+ and let this be the starting generation: generation 0. # # Determine each successive generation by the following rules: # # 1) Each cell has 8 neighbors, the adjoining cells # #+ left, right, top, bottom, and the 4 diagonals. # # # # 123 # # 4*5 The * is the cell under consideration. # # 678 # # # # 2) A living cell with either 2 or 3 living neighbors remains alive. # SURVIVE=2 # # 3) A dead cell with 3 living neighbors comes alive, a "birth." # BIRTH=3 # # 4) All other cases result in a dead cell for the next generation. # # ##################################################################### # startfile=gen0 # Read the starting generation from the file "gen0" ... # Default, if no other file specified when invoking script. # if [ -n "$1" ] # Specify another "generation 0" file. then startfile="$1" fi ############################################ # Abort script if "startfile" not specified #+ and #+ default file "gen0" not present. E_NOSTARTFILE=86 if [ ! -e "$startfile" ] then echo "Startfile \""$startfile"\" missing!" exit $E_NOSTARTFILE fi ############################################ ALIVE1=. DEAD1=_ # Represent living and dead cells in the start-up file. # -----------------------------------------------------# # This script uses a 10 x 10 grid (may be increased, #+ but a large grid will slow down execution). ROWS=10 COLS=10 # Change above two variables to match desired grid size. # -----------------------------------------------------# GENERATIONS=10 # How many generations to cycle through. # Adjust this upwards #+ if you have time on your hands. NONE_ALIVE=85 # Exit status on premature bailout, #+ if no cells left alive. DELAY=2 # Pause between generations. TRUE=0 FALSE=1 ALIVE=0 DEAD=1 avar= # Global; holds current generation. generation=0 # Initialize generation count. # ================================================================= let "cells = $ROWS * $COLS" # How many cells. # Arrays containing "cells." declare -a initial declare -a current display () { alive=0 # How many cells alive at any given time. # Initially zero. declare -a arr arr=( `echo "$1"` ) # Convert passed arg to array. element_count=${#arr[*]} local i local rowcheck for ((i=0; i<$element_count; i++)) do # Insert newline at end of each row. let "rowcheck = $i % COLS" if [ "$rowcheck" -eq 0 ] then echo # Newline. echo -n " " # Indent. fi cell=${arr[i]} if [ "$cell" = . ] then let "alive += 1" fi echo -n "$cell" | sed -e 's/_/ /g' # Print out array, changing underscores to spaces. done return } IsValid () # Test if cell coordinate valid. { if [ -z "$1" -o -z "$2" ] # Mandatory arguments missing? then return $FALSE fi local row local lower_limit=0 # Disallow negative coordinate. local upper_limit local left local right let "upper_limit = $ROWS * $COLS - 1" # Total number of cells. if [ "$1" -lt "$lower_limit" -o "$1" -gt "$upper_limit" ] then return $FALSE # Out of array bounds. fi row=$2 let "left = $row * $COLS" # Left limit. let "right = $left + $COLS - 1" # Right limit. if [ "$1" -lt "$left" -o "$1" -gt "$right" ] then return $FALSE # Beyond row boundary. fi return $TRUE # Valid coordinate. } IsAlive () # Test whether cell is alive. # Takes array, cell number, and { #+ state of cell as arguments. GetCount "$1" $2 # Get alive cell count in neighborhood. local nhbd=$? if [ "$nhbd" -eq "$BIRTH" ] # Alive in any case. then return $ALIVE fi if [ "$3" = "." -a "$nhbd" -eq "$SURVIVE" ] then # Alive only if previously alive. return $ALIVE fi return $DEAD # Defaults to dead. } GetCount () # Count live cells in passed cell's neighborhood. # Two arguments needed: # $1) variable holding array # $2) cell number { local cell_number=$2 local array local top local center local bottom local r local row local i local t_top local t_cen local t_bot local count=0 local ROW_NHBD=3 array=( `echo "$1"` ) let "top = $cell_number - $COLS - 1" # Set up cell neighborhood. let "center = $cell_number - 1" let "bottom = $cell_number + $COLS - 1" let "r = $cell_number / $COLS" for ((i=0; i<$ROW_NHBD; i++)) # Traverse from left to right. do let "t_top = $top + $i" let "t_cen = $center + $i" let "t_bot = $bottom + $i" let "row = $r" # Count center row. IsValid $t_cen $row # Valid cell position? if [ $? -eq "$TRUE" ] then if [ ${array[$t_cen]} = "$ALIVE1" ] # Is it alive? then # If yes, then ... let "count += 1" # Increment count. fi fi let "row = $r - 1" # Count top row. IsValid $t_top $row if [ $? -eq "$TRUE" ] then if [ ${array[$t_top]} = "$ALIVE1" ] # Redundancy here. then # Can it be optimized? let "count += 1" fi fi let "row = $r + 1" # Count bottom row. IsValid $t_bot $row if [ $? -eq "$TRUE" ] then if [ ${array[$t_bot]} = "$ALIVE1" ] then let "count += 1" fi fi done if [ ${array[$cell_number]} = "$ALIVE1" ] then let "count -= 1" # Make sure value of tested cell itself fi #+ is not counted. return $count } next_gen () # Update generation array. { local array local i=0 array=( `echo "$1"` ) # Convert passed arg to array. while [ "$i" -lt "$cells" ] do IsAlive "$1" $i ${array[$i]} # Is the cell alive? if [ $? -eq "$ALIVE" ] then # If alive, then array[$i]=. #+ represent the cell as a period. else array[$i]="_" # Otherwise underscore fi #+ (will later be converted to space). let "i += 1" done # let "generation += 1" # Increment generation count. ### Why was the above line commented out? # Set variable to pass as parameter to "display" function. avar=`echo ${array[@]}` # Convert array back to string variable. display "$avar" # Display it. echo; echo echo "Generation $generation - $alive alive" if [ "$alive" -eq 0 ] then echo echo "Premature exit: no more cells alive!" exit $NONE_ALIVE # No point in continuing fi #+ if no live cells. } # ========================================================= # main () # { # Load initial array with contents of startup file. initial=( `cat "$startfile" | sed -e '/#/d' | tr -d '\n' |\ # Delete lines containing '#' comment character. sed -e 's/\./\. /g' -e 's/_/_ /g'` ) # Remove linefeeds and insert space between elements. clear # Clear screen. echo # Title setterm -reverse on echo "=======================" setterm -reverse off echo " $GENERATIONS generations" echo " of" echo "\"Life in the Slow Lane\"" setterm -reverse on echo "=======================" setterm -reverse off sleep $DELAY # Display "splash screen" for 2 seconds. # -------- Display first generation. -------- Gen0=`echo ${initial[@]}` display "$Gen0" # Display only. echo; echo echo "Generation $generation - $alive alive" sleep $DELAY # ------------------------------------------- let "generation += 1" # Bump generation count. echo # ------- Display second generation. ------- Cur=`echo ${initial[@]}` next_gen "$Cur" # Update & display. sleep $DELAY # ------------------------------------------ let "generation += 1" # Increment generation count. # ------ Main loop for displaying subsequent generations ------ while [ "$generation" -le "$GENERATIONS" ] do Cur="$avar" next_gen "$Cur" let "generation += 1" sleep $DELAY done # ============================================================== echo # } exit 0 # CEOF:EOF # The grid in this script has a "boundary problem." # The the top, bottom, and sides border on a void of dead cells. # Exercise: Change the script to have the grid wrap around, # + so that the left and right sides will "touch," # + as will the top and bottom. # # Exercise: Create a new "gen0" file to seed this script. # Use a 12 x 16 grid, instead of the original 10 x 10 one. # Make the necessary changes to the script, #+ so it will run with the altered file. # # Exercise: Modify this script so that it can determine the grid size #+ from the "gen0" file, and set any variables necessary #+ for the script to run. # This would make unnecessary any changes to variables #+ in the script for an altered grid size. # # Exercise: Optimize this script. # It has redundant code.
Example A-11. Data file for Game of Life
# gen0 # # This is an example "generation 0" start-up file for "life.sh". # -------------------------------------------------------------- # The "gen0" file is a 10 x 10 grid using a period (.) for live cells, #+ and an underscore (_) for dead ones. We cannot simply use spaces #+ for dead cells in this file because of a peculiarity in Bash arrays. # [Exercise for the reader: explain this.] # # Lines beginning with a '#' are comments, and the script ignores them. __.__..___ __.._.____ ____.___.. _._______. ____._____ ..__...___ ____._____ ___...____ __.._..___ _..___..__
+++
The following script is by Mark Moraes of the University of Toronto. See the file Moraes-COPYRIGHT for permissions and restrictions. This file is included in the combined HTML/source tarball of the ABS Guide.
Example A-12. behead: Removing mail and news message headers
#! /bin/sh # Strips off the header from a mail/News message i.e. till the first #+ empty line. # Author: Mark Moraes, University of Toronto # ==> These comments added by author of this document. if [ $# -eq 0 ]; then # ==> If no command-line args present, then works on file redirected to stdin. sed -e '1,/^$/d' -e '/^[ ]*$/d' # --> Delete empty lines and all lines until # --> first one beginning with white space. else # ==> If command-line args present, then work on files named. for i do sed -e '1,/^$/d' -e '/^[ ]*$/d' $i # --> Ditto, as above. done fi exit # ==> Exercise: Add error checking and other options. # ==> # ==> Note that the small sed script repeats, except for the arg passed. # ==> Does it make sense to embed it in a function? Why or why not? /* * Copyright University of Toronto 1988, 1989. * Written by Mark Moraes * * Permission is granted to anyone to use this software for any purpose on * any computer system, and to alter it and redistribute it freely, subject * to the following restrictions: * * 1. The author and the University of Toronto are not responsible * for the consequences of use of this software, no matter how awful, * even if they arise from flaws in it. * * 2. The origin of this software must not be misrepresented, either by * explicit claim or by omission. Since few users ever read sources, * credits must appear in the documentation. * * 3. Altered versions must be plainly marked as such, and must not be * misrepresented as being the original software. Since few users * ever read sources, credits must appear in the documentation. * * 4. This notice may not be removed or altered. */
+
Antek Sawicki contributed the following script, which makes very clever use of the parameter substitution operators discussed in Section 10.2.
Example A-13. password: Generating random 8-character passwords
#!/bin/bash # # # Random password generator for Bash 2.x + #+ by Antek Sawicki <[email protected]>, #+ who generously gave usage permission to the ABS Guide author. # # ==> Comments added by document author ==> MATRIX="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" # ==> Password will consist of alphanumeric characters. LENGTH="8" # ==> May change 'LENGTH' for longer password. while [ "${n:=1}" -le "$LENGTH" ] # ==> Recall that := is "default substitution" operator. # ==> So, if 'n' has not been initialized, set it to 1. do PASS="$PASS${MATRIX:$(($RANDOM%${#MATRIX})):1}" # ==> Very clever, but tricky. # ==> Starting from the innermost nesting... # ==> ${#MATRIX} returns length of array MATRIX. # ==> $RANDOM%${#MATRIX} returns random number between 1 # ==> and [length of MATRIX] - 1. # ==> ${MATRIX:$(($RANDOM%${#MATRIX})):1} # ==> returns expansion of MATRIX at random position, by length 1. # ==> See {var:pos:len} parameter substitution in Chapter 9. # ==> and the associated examples. # ==> PASS=... simply pastes this result onto previous PASS (concatenation). # ==> To visualize this more clearly, uncomment the following line # echo "$PASS" # ==> to see PASS being built up, # ==> one character at a time, each iteration of the loop. let n+=1 # ==> Increment 'n' for next pass. done echo "$PASS" # ==> Or, redirect to a file, as desired. exit 0
+
James R. Van Zandt contributed this script which uses named pipes and, in his words, "really exercises quoting and escaping."
Example A-14. fifo: Making daily backups, using named pipes
#!/bin/bash # ==> Script by James R. Van Zandt, and used here with his permission. # ==> Comments added by author of this document. HERE=`uname -n` # ==> hostname THERE=bilbo echo "starting remote backup to $THERE at `date +%r`" # ==> `date +%r` returns time in 12-hour format, i.e. "08:08:34 PM". # make sure /pipe really is a pipe and not a plain file rm -rf /pipe mkfifo /pipe # ==> Create a "named pipe", named "/pipe" ... # ==> 'su xyz' runs commands as user "xyz". # ==> 'ssh' invokes secure shell (remote login client). su xyz -c "ssh $THERE \"cat > /home/xyz/backup/${HERE}-daily.tar.gz\" < /pipe"& cd / tar -czf - bin boot dev etc home info lib man root sbin share usr var > /pipe # ==> Uses named pipe, /pipe, to communicate between processes: # ==> 'tar/gzip' writes to /pipe and 'ssh' reads from /pipe. # ==> The end result is this backs up the main directories, from / on down. # ==> What are the advantages of a "named pipe" in this situation, # ==>+ as opposed to an "anonymous pipe", with |? # ==> Will an anonymous pipe even work here? # ==> Is it necessary to delete the pipe before exiting the script? # ==> How could that be done? exit 0
+
Stéphane Chazelas used the following script to demonstrate generating prime numbers without arrays.
Example A-15. Generating prime numbers using the modulo operator
#!/bin/bash # primes.sh: Generate prime numbers, without using arrays. # Script contributed by Stephane Chazelas. # This does *not* use the classic "Sieve of Eratosthenes" algorithm, #+ but instead the more intuitive method of testing each candidate number #+ for factors (divisors), using the "%" modulo operator. LIMIT=1000 # Primes, 2 ... 1000. Primes() { (( n = $1 + 1 )) # Bump to next integer. shift # Next parameter in list. # echo "_n=$n i=$i_" if (( n == LIMIT )) then echo $* return fi for i; do # "i" set to "@", previous values of $n. # echo "-n=$n i=$i-" (( i * i > n )) && break # Optimization. (( n % i )) && continue # Sift out non-primes using modulo operator. Primes $n $@ # Recursion inside loop. return done Primes $n $@ $n # Recursion outside loop. # Successively accumulate #+ positional parameters. # "$@" is the accumulating list of primes. } Primes 1 exit $? # Pipe output of the script to 'fmt' for prettier printing. # Uncomment lines 16 and 24 to help figure out what is going on. # Compare the speed of this algorithm for generating primes #+ with the Sieve of Eratosthenes (ex68.sh). # Exercise: Rewrite this script without recursion.
+
Rick Boivie's revision of Jordi Sanfeliu's tree script.
Example A-16. tree: Displaying a directory tree
#!/bin/bash # tree.sh # Written by Rick Boivie. # Used with permission. # This is a revised and simplified version of a script #+ by Jordi Sanfeliu (the original author), and patched by Ian Kjos. # This script replaces the earlier version used in #+ previous releases of the Advanced Bash Scripting Guide. # Copyright (c) 2002, by Jordi Sanfeliu, Rick Boivie, and Ian Kjos. # ==> Comments added by the author of this document. search () { for dir in `echo *` # ==> `echo *` lists all the files in current working directory, #+ ==> without line breaks. # ==> Similar effect to for dir in * # ==> but "dir in `echo *`" will not handle filenames with blanks. do if [ -d "$dir" ] ; then # ==> If it is a directory (-d)... zz=0 # ==> Temp variable, keeping track of # directory level. while [ $zz != $1 ] # Keep track of inner nested loop. do echo -n "| " # ==> Display vertical connector symbol, # ==> with 2 spaces & no line feed # in order to indent. zz=`expr $zz + 1` # ==> Increment zz. done if [ -L "$dir" ] ; then # ==> If directory is a symbolic link... echo "+---$dir" `ls -l $dir | sed 's/^.*'$dir' //'` # ==> Display horiz. connector and list directory name, but... # ==> delete date/time part of long listing. else echo "+---$dir" # ==> Display horizontal connector symbol... # ==> and print directory name. numdirs=`expr $numdirs + 1` # ==> Increment directory count. if cd "$dir" ; then # ==> If can move to subdirectory... search `expr $1 + 1` # with recursion ;-) # ==> Function calls itself. cd .. fi fi fi done } if [ $# != 0 ] ; then cd $1 # Move to indicated directory. #else # stay in current directory fi echo "Initial directory = `pwd`" numdirs=0 search 0 echo "Total directories = $numdirs" exit 0
Patsie's version of a directory tree script.
Example A-17. tree2: Alternate directory tree script
#!/bin/bash # tree2.sh # Lightly modified/reformatted by ABS Guide author. # Included in ABS Guide with permission of script author (thanks!). ## Recursive file/dirsize checking script, by Patsie ## ## This script builds a list of files/directories and their size (du -akx) ## and processes this list to a human readable tree shape ## The 'du -akx' is only as good as the permissions the owner has. ## So preferably run as root* to get the best results, or use only on ## directories for which you have read permissions. Anything you can't ## read is not in the list. #* ABS Guide author advises caution when running scripts as root! ########## THIS IS CONFIGURABLE ########## TOP=5 # Top 5 biggest (sub)directories. MAXRECURS=5 # Max 5 subdirectories/recursions deep. E_BL=80 # Blank line already returned. E_DIR=81 # Directory not specified. ########## DON'T CHANGE ANYTHING BELOW THIS LINE ########## PID=$$ # Our own process ID. SELF=`basename $0` # Our own program name. TMP="/tmp/${SELF}.${PID}.tmp" # Temporary 'du' result. # Convert number to dotted thousand. function dot { echo " $*" | sed -e :a -e 's/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/;ta' | tail -c 12; } # Usage: tree <recursion> <indent prefix> <min size> <directory> function tree { recurs="$1" # How deep nested are we? prefix="$2" # What do we display before file/dirname? minsize="$3" # What is the minumum file/dirsize? dirname="$4" # Which directory are we checking? # Get ($TOP) biggest subdirs/subfiles from TMP file. LIST=`egrep "[[:space:]]${dirname}/[^/]*$" "$TMP" | awk '{if($1>'$minsize') print;}' | sort -nr | head -$TOP` [ -z "$LIST" ] && return # Empty list, then go back. cnt=0 num=`echo "$LIST" | wc -l` # How many entries in the list. ## Main loop echo "$LIST" | while read size name; do ((cnt+=1)) # Count entry number. bname=`basename "$name"` # We only need a basename of the entry. [ -d "$name" ] && bname="$bname/" # If it's a directory, append a slash. echo "`dot $size`$prefix +-$bname" # Display the result. # Call ourself recursively if it's a directory #+ and we're not nested too deep ($MAXRECURS). # The recursion goes up: $((recurs+1)) # The prefix gets a space if it's the last entry, #+ or a pipe if there are more entries. # The minimum file/dirsize becomes #+ a tenth of his parent: $((size/10)). # Last argument is the full directory name to check. if [ -d "$name" -a $recurs -lt $MAXRECURS ]; then [ $cnt -lt $num ] \ || (tree $((recurs+1)) "$prefix " $((size/10)) "$name") \ && (tree $((recurs+1)) "$prefix |" $((size/10)) "$name") fi done [ $? -eq 0 ] && echo " $prefix" # Every time we jump back add a 'blank' line. return $E_BL # We return 80 to tell we added a blank line already. } ### ### ### main program ### ### ### rootdir="$@" [ -d "$rootdir" ] || { echo "$SELF: Usage: $SELF <directory>" >&2; exit $E_DIR; } # We should be called with a directory name. echo "Building inventory list, please wait ..." # Show "please wait" message. du -akx "$rootdir" 1>"$TMP" 2>/dev/null # Build a temporary list of all files/dirs and their size. size=`tail -1 "$TMP" | awk '{print $1}'` # What is our rootdirectory's size? echo "`dot $size` $rootdir" # Display rootdirectory's entry. tree 0 "" 0 "$rootdir" # Display the tree below our rootdirectory. rm "$TMP" 2>/dev/null # Clean up TMP file. exit $?
Noah Friedman permitted use of his string function script. It essentially reproduces some of the C-library string manipulation functions.
Example A-18. string functions: C-style string functions
#!/bin/bash # string.bash --- bash emulation of string(3) library routines # Author: Noah Friedman <[email protected]> # ==> Used with his kind permission in this document. # Created: 1992-07-01 # Last modified: 1993-09-29 # Public domain # Conversion to bash v2 syntax done by Chet Ramey # Commentary: # Code: #:docstring strcat: # Usage: strcat s1 s2 # # Strcat appends the value of variable s2 to variable s1. # # Example: # a="foo" # b="bar" # strcat a b # echo $a # => foobar # #:end docstring: ###;;;autoload ==> Autoloading of function commented out. function strcat () { local s1_val s2_val s1_val=${!1} # indirect variable expansion s2_val=${!2} eval "$1"=\'"${s1_val}${s2_val}"\' # ==> eval $1='${s1_val}${s2_val}' avoids problems, # ==> if one of the variables contains a single quote. } #:docstring strncat: # Usage: strncat s1 s2 $n # # Line strcat, but strncat appends a maximum of n characters from the value # of variable s2. It copies fewer if the value of variabl s2 is shorter # than n characters. Echoes result on stdout. # # Example: # a=foo # b=barbaz # strncat a b 3 # echo $a # => foobar # #:end docstring: ###;;;autoload function strncat () { local s1="$1" local s2="$2" local -i n="$3" local s1_val s2_val s1_val=${!s1} # ==> indirect variable expansion s2_val=${!s2} if [ ${#s2_val} -gt ${n} ]; then s2_val=${s2_val:0:$n} # ==> substring extraction fi eval "$s1"=\'"${s1_val}${s2_val}"\' # ==> eval $1='${s1_val}${s2_val}' avoids problems, # ==> if one of the variables contains a single quote. } #:docstring strcmp: # Usage: strcmp $s1 $s2 # # Strcmp compares its arguments and returns an integer less than, equal to, # or greater than zero, depending on whether string s1 is lexicographically # less than, equal to, or greater than string s2. #:end docstring: ###;;;autoload function strcmp () { [ "$1" = "$2" ] && return 0 [ "${1}" '<' "${2}" ] > /dev/null && return -1 return 1 } #:docstring strncmp: # Usage: strncmp $s1 $s2 $n # # Like strcmp, but makes the comparison by examining a maximum of n # characters (n less than or equal to zero yields equality). #:end docstring: ###;;;autoload function strncmp () { if [ -z "${3}" -o "${3}" -le "0" ]; then return 0 fi if [ ${3} -ge ${#1} -a ${3} -ge ${#2} ]; then strcmp "$1" "$2" return $? else s1=${1:0:$3} s2=${2:0:$3} strcmp $s1 $s2 return $? fi } #:docstring strlen: # Usage: strlen s # # Strlen returns the number of characters in string literal s. #:end docstring: ###;;;autoload function strlen () { eval echo "\${#${1}}" # ==> Returns the length of the value of the variable # ==> whose name is passed as an argument. } #:docstring strspn: # Usage: strspn $s1 $s2 # # Strspn returns the length of the maximum initial segment of string s1, # which consists entirely of characters from string s2. #:end docstring: ###;;;autoload function strspn () { # Unsetting IFS allows whitespace to be handled as normal chars. local IFS= local result="${1%%[!${2}]*}" echo ${#result} } #:docstring strcspn: # Usage: strcspn $s1 $s2 # # Strcspn returns the length of the maximum initial segment of string s1, # which consists entirely of characters not from string s2. #:end docstring: ###;;;autoload function strcspn () { # Unsetting IFS allows whitspace to be handled as normal chars. local IFS= local result="${1%%[${2}]*}" echo ${#result} } #:docstring strstr: # Usage: strstr s1 s2 # # Strstr echoes a substring starting at the first occurrence of string s2 in # string s1, or nothing if s2 does not occur in the string. If s2 points to # a string of zero length, strstr echoes s1. #:end docstring: ###;;;autoload function strstr () { # if s2 points to a string of zero length, strstr echoes s1 [ ${#2} -eq 0 ] && { echo "$1" ; return 0; } # strstr echoes nothing if s2 does not occur in s1 case "$1" in *$2*) ;; *) return 1;; esac # use the pattern matching code to strip off the match and everything # following it first=${1/$2*/} # then strip off the first unmatched portion of the string echo "${1##$first}" } #:docstring strtok: # Usage: strtok s1 s2 # # Strtok considers the string s1 to consist of a sequence of zero or more # text tokens separated by spans of one or more characters from the # separator string s2. The first call (with a non-empty string s1 # specified) echoes a string consisting of the first token on stdout. The # function keeps track of its position in the string s1 between separate # calls, so that subsequent calls made with the first argument an empty # string will work through the string immediately following that token. In # this way subsequent calls will work through the string s1 until no tokens # remain. The separator string s2 may be different from call to call. # When no token remains in s1, an empty value is echoed on stdout. #:end docstring: ###;;;autoload function strtok () { : } #:docstring strtrunc: # Usage: strtrunc $n $s1 {$s2} {$...} # # Used by many functions like strncmp to truncate arguments for comparison. # Echoes the first n characters of each string s1 s2 ... on stdout. #:end docstring: ###;;;autoload function strtrunc () { n=$1 ; shift for z; do echo "${z:0:$n}" done } # provide string # string.bash ends here # ========================================================================== # # ==> Everything below here added by the document author. # ==> Suggested use of this script is to delete everything below here, # ==> and "source" this file into your own scripts. # strcat string0=one string1=two echo echo "Testing \"strcat\" function:" echo "Original \"string0\" = $string0" echo "\"string1\" = $string1" strcat string0 string1 echo "New \"string0\" = $string0" echo # strlen echo echo "Testing \"strlen\" function:" str=123456789 echo "\"str\" = $str" echo -n "Length of \"str\" = " strlen str echo # Exercise: # -------- # Add code to test all the other string functions above. exit 0
Michael Zick's complex array example uses the md5sum check sum command to encode directory information.
Example A-19. Directory information
#! /bin/bash # directory-info.sh # Parses and lists directory information. # NOTE: Change lines 273 and 353 per "README" file. # Michael Zick is the author of this script. # Used here with his permission. # Controls # If overridden by command arguments, they must be in the order: # Arg1: "Descriptor Directory" # Arg2: "Exclude Paths" # Arg3: "Exclude Directories" # # Environment Settings override Defaults. # Command arguments override Environment Settings. # Default location for content addressed file descriptors. MD5UCFS=${1:-${MD5UCFS:-'/tmpfs/ucfs'}} # Directory paths never to list or enter declare -a \ EXCLUDE_PATHS=${2:-${EXCLUDE_PATHS:-'(/proc /dev /devfs /tmpfs)'}} # Directories never to list or enter declare -a \ EXCLUDE_DIRS=${3:-${EXCLUDE_DIRS:-'(ucfs lost+found tmp wtmp)'}} # Files never to list or enter declare -a \ EXCLUDE_FILES=${3:-${EXCLUDE_FILES:-'(core "Name with Spaces")'}} # Here document used as a comment block. : <<LSfieldsDoc # # # # # List Filesystem Directory Information # # # # # # # ListDirectory "FileGlob" "Field-Array-Name" # or # ListDirectory -of "FileGlob" "Field-Array-Filename" # '-of' meaning 'output to filename' # # # # # String format description based on: ls (GNU fileutils) version 4.0.36 Produces a line (or more) formatted: inode permissions hard-links owner group ... 32736 -rw------- 1 mszick mszick size day month date hh:mm:ss year path 2756608 Sun Apr 20 08:53:06 2003 /home/mszick/core Unless it is formatted: inode permissions hard-links owner group ... 266705 crw-rw---- 1 root uucp major minor day month date hh:mm:ss year path 4, 68 Sun Apr 20 09:27:33 2003 /dev/ttyS4 NOTE: that pesky comma after the major number NOTE: the 'path' may be multiple fields: /home/mszick/core /proc/982/fd/0 -> /dev/null /proc/982/fd/1 -> /home/mszick/.xsession-errors /proc/982/fd/13 -> /tmp/tmpfZVVOCs (deleted) /proc/982/fd/7 -> /tmp/kde-mszick/ksycoca /proc/982/fd/8 -> socket:[11586] /proc/982/fd/9 -> pipe:[11588] If that isn't enough to keep your parser guessing, either or both of the path components may be relative: ../Built-Shared -> Built-Static ../linux-2.4.20.tar.bz2 -> ../../../SRCS/linux-2.4.20.tar.bz2 The first character of the 11 (10?) character permissions field: 's' Socket 'd' Directory 'b' Block device 'c' Character device 'l' Symbolic link NOTE: Hard links not marked - test for identical inode numbers on identical filesystems. All information about hard linked files are shared, except for the names and the name's location in the directory system. NOTE: A "Hard link" is known as a "File Alias" on some systems. '-' An undistingushed file Followed by three groups of letters for: User, Group, Others Character 1: '-' Not readable; 'r' Readable Character 2: '-' Not writable; 'w' Writable Character 3, User and Group: Combined execute and special '-' Not Executable, Not Special 'x' Executable, Not Special 's' Executable, Special 'S' Not Executable, Special Character 3, Others: Combined execute and sticky (tacky?) '-' Not Executable, Not Tacky 'x' Executable, Not Tacky 't' Executable, Tacky 'T' Not Executable, Tacky Followed by an access indicator Haven't tested this one, it may be the eleventh character or it may generate another field ' ' No alternate access '+' Alternate access LSfieldsDoc ListDirectory() { local -a T local -i of=0 # Default return in variable # OLD_IFS=$IFS # Using BASH default ' \t\n' case "$#" in 3) case "$1" in -of) of=1 ; shift ;; * ) return 1 ;; esac ;; 2) : ;; # Poor man's "continue" *) return 1 ;; esac # NOTE: the (ls) command is NOT quoted (") T=( $(ls --inode --ignore-backups --almost-all --directory \ --full-time --color=none --time=status --sort=none \ --format=long $1) ) case $of in # Assign T back to the array whose name was passed as $2 0) eval $2=\( \"\$\{T\[@\]\}\" \) ;; # Write T into filename passed as $2 1) echo "${T[@]}" > "$2" ;; esac return 0 } # # # # # Is that string a legal number? # # # # # # # IsNumber "Var" # # # # # There has to be a better way, sigh... IsNumber() { local -i int if [ $# -eq 0 ] then return 1 else (let int=$1) 2>/dev/null return $? # Exit status of the let thread fi } # # # # # Index Filesystem Directory Information # # # # # # # IndexList "Field-Array-Name" "Index-Array-Name" # or # IndexList -if Field-Array-Filename Index-Array-Name # IndexList -of Field-Array-Name Index-Array-Filename # IndexList -if -of Field-Array-Filename Index-Array-Filename # # # # # : <<IndexListDoc Walk an array of directory fields produced by ListDirectory Having suppressed the line breaks in an otherwise line oriented report, build an index to the array element which starts each line. Each line gets two index entries, the first element of each line (inode) and the element that holds the pathname of the file. The first index entry pair (Line-Number==0) are informational: Index-Array-Name[0] : Number of "Lines" indexed Index-Array-Name[1] : "Current Line" pointer into Index-Array-Name The following index pairs (if any) hold element indexes into the Field-Array-Name per: Index-Array-Name[Line-Number * 2] : The "inode" field element. NOTE: This distance may be either +11 or +12 elements. Index-Array-Name[(Line-Number * 2) + 1] : The "pathname" element. NOTE: This distance may be a variable number of elements. Next line index pair for Line-Number+1. IndexListDoc IndexList() { local -a LIST # Local of listname passed local -a -i INDEX=( 0 0 ) # Local of index to return local -i Lidx Lcnt local -i if=0 of=0 # Default to variable names case "$#" in # Simplistic option testing 0) return 1 ;; 1) return 1 ;; 2) : ;; # Poor man's continue 3) case "$1" in -if) if=1 ;; -of) of=1 ;; * ) return 1 ;; esac ; shift ;; 4) if=1 ; of=1 ; shift ; shift ;; *) return 1 esac # Make local copy of list case "$if" in 0) eval LIST=\( \"\$\{$1\[@\]\}\" \) ;; 1) LIST=( $(cat $1) ) ;; esac # Grok (grope?) the array Lcnt=${#LIST[@]} Lidx=0 until (( Lidx >= Lcnt )) do if IsNumber ${LIST[$Lidx]} then local -i inode name local ft inode=Lidx local m=${LIST[$Lidx+2]} # Hard Links field ft=${LIST[$Lidx+1]:0:1} # Fast-Stat case $ft in b) ((Lidx+=12)) ;; # Block device c) ((Lidx+=12)) ;; # Character device *) ((Lidx+=11)) ;; # Anything else esac name=Lidx case $ft in -) ((Lidx+=1)) ;; # The easy one b) ((Lidx+=1)) ;; # Block device c) ((Lidx+=1)) ;; # Character device d) ((Lidx+=1)) ;; # The other easy one l) ((Lidx+=3)) ;; # At LEAST two more fields # A little more elegance here would handle pipes, #+ sockets, deleted files - later. *) until IsNumber ${LIST[$Lidx]} || ((Lidx >= Lcnt)) do ((Lidx+=1)) done ;; # Not required esac INDEX[${#INDEX[*]}]=$inode INDEX[${#INDEX[*]}]=$name INDEX[0]=${INDEX[0]}+1 # One more "line" found # echo "Line: ${INDEX[0]} Type: $ft Links: $m Inode: \ # ${LIST[$inode]} Name: ${LIST[$name]}" else ((Lidx+=1)) fi done case "$of" in 0) eval $2=\( \"\$\{INDEX\[@\]\}\" \) ;; 1) echo "${INDEX[@]}" > "$2" ;; esac return 0 # What could go wrong? } # # # # # Content Identify File # # # # # # # DigestFile Input-Array-Name Digest-Array-Name # or # DigestFile -if Input-FileName Digest-Array-Name # # # # # # Here document used as a comment block. : <<DigestFilesDoc The key (no pun intended) to a Unified Content File System (UCFS) is to distinguish the files in the system based on their content. Distinguishing files by their name is just so 20th Century. The content is distinguished by computing a checksum of that content. This version uses the md5sum program to generate a 128 bit checksum representative of the file's contents. There is a chance that two files having different content might generate the same checksum using md5sum (or any checksum). Should that become a problem, then the use of md5sum can be replace by a cyrptographic signature. But until then... The md5sum program is documented as outputting three fields (and it does), but when read it appears as two fields (array elements). This is caused by the lack of whitespace between the second and third field. So this function gropes the md5sum output and returns: [0] 32 character checksum in hexidecimal (UCFS filename) [1] Single character: ' ' text file, '*' binary file [2] Filesystem (20th Century Style) name Note: That name may be the character '-' indicating STDIN read. DigestFilesDoc DigestFile() { local if=0 # Default, variable name local -a T1 T2 case "$#" in 3) case "$1" in -if) if=1 ; shift ;; * ) return 1 ;; esac ;; 2) : ;; # Poor man's "continue" *) return 1 ;; esac case $if in 0) eval T1=\( \"\$\{$1\[@\]\}\" \) T2=( $(echo ${T1[@]} | md5sum -) ) ;; 1) T2=( $(md5sum $1) ) ;; esac case ${#T2[@]} in 0) return 1 ;; 1) return 1 ;; 2) case ${T2[1]:0:1} in # SanScrit-2.0.5 \*) T2[${#T2[@]}]=${T2[1]:1} T2[1]=\* ;; *) T2[${#T2[@]}]=${T2[1]} T2[1]=" " ;; esac ;; 3) : ;; # Assume it worked *) return 1 ;; esac local -i len=${#T2[0]} if [ $len -ne 32 ] ; then return 1 ; fi eval $2=\( \"\$\{T2\[@\]\}\" \) } # # # # # Locate File # # # # # # # LocateFile [-l] FileName Location-Array-Name # or # LocateFile [-l] -of FileName Location-Array-FileName # # # # # # A file location is Filesystem-id and inode-number # Here document used as a comment block. : <<StatFieldsDoc Based on stat, version 2.2 stat -t and stat -lt fields [0] name [1] Total size File - number of bytes Symbolic link - string length of pathname [2] Number of (512 byte) blocks allocated [3] File type and Access rights (hex) [4] User ID of owner [5] Group ID of owner [6] Device number [7] Inode number [8] Number of hard links [9] Device type (if inode device) Major [10] Device type (if inode device) Minor [11] Time of last access May be disabled in 'mount' with noatime atime of files changed by exec, read, pipe, utime, mknod (mmap?) atime of directories changed by addition/deletion of files [12] Time of last modification mtime of files changed by write, truncate, utime, mknod mtime of directories changed by addtition/deletion of files [13] Time of last change ctime reflects time of changed inode information (owner, group permissions, link count -*-*- Per: Return code: 0 Size of array: 14 Contents of array Element 0: /home/mszick Element 1: 4096 Element 2: 8 Element 3: 41e8 Element 4: 500 Element 5: 500 Element 6: 303 Element 7: 32385 Element 8: 22 Element 9: 0 Element 10: 0 Element 11: 1051221030 Element 12: 1051214068 Element 13: 1051214068 For a link in the form of linkname -> realname stat -t linkname returns the linkname (link) information stat -lt linkname returns the realname information stat -tf and stat -ltf fields [0] name [1] ID-0? # Maybe someday, but Linux stat structure [2] ID-0? # does not have either LABEL nor UUID # fields, currently information must come # from file-system specific utilities These will be munged into: [1] UUID if possible [2] Volume Label if possible Note: 'mount -l' does return the label and could return the UUID [3] Maximum length of filenames [4] Filesystem type [5] Total blocks in the filesystem [6] Free blocks [7] Free blocks for non-root user(s) [8] Block size of the filesystem [9] Total inodes [10] Free inodes -*-*- Per: Return code: 0 Size of array: 11 Contents of array Element 0: /home/mszick Element 1: 0 Element 2: 0 Element 3: 255 Element 4: ef53 Element 5: 2581445 Element 6: 2277180 Element 7: 2146050 Element 8: 4096 Element 9: 1311552 Element 10: 1276425 StatFieldsDoc # LocateFile [-l] FileName Location-Array-Name # LocateFile [-l] -of FileName Location-Array-FileName LocateFile() { local -a LOC LOC1 LOC2 local lk="" of=0 case "$#" in 0) return 1 ;; 1) return 1 ;; 2) : ;; *) while (( "$#" > 2 )) do case "$1" in -l) lk=-1 ;; -of) of=1 ;; *) return 1 ;; esac shift done ;; esac # More Sanscrit-2.0.5 # LOC1=( $(stat -t $lk $1) ) # LOC2=( $(stat -tf $lk $1) ) # Uncomment above two lines if system has "stat" command installed. LOC=( ${LOC1[@]:0:1} ${LOC1[@]:3:11} ${LOC2[@]:1:2} ${LOC2[@]:4:1} ) case "$of" in 0) eval $2=\( \"\$\{LOC\[@\]\}\" \) ;; 1) echo "${LOC[@]}" > "$2" ;; esac return 0 # Which yields (if you are lucky, and have "stat" installed) # -*-*- Location Discriptor -*-*- # Return code: 0 # Size of array: 15 # Contents of array # Element 0: /home/mszick 20th Century name # Element 1: 41e8 Type and Permissions # Element 2: 500 User # Element 3: 500 Group # Element 4: 303 Device # Element 5: 32385 inode # Element 6: 22 Link count # Element 7: 0 Device Major # Element 8: 0 Device Minor # Element 9: 1051224608 Last Access # Element 10: 1051214068 Last Modify # Element 11: 1051214068 Last Status # Element 12: 0 UUID (to be) # Element 13: 0 Volume Label (to be) # Element 14: ef53 Filesystem type } # And then there was some test code ListArray() # ListArray Name { local -a Ta eval Ta=\( \"\$\{$1\[@\]\}\" \) echo echo "-*-*- List of Array -*-*-" echo "Size of array $1: ${#Ta[*]}" echo "Contents of array $1:" for (( i=0 ; i<${#Ta[*]} ; i++ )) do echo -e "\tElement $i: ${Ta[$i]}" done return 0 } declare -a CUR_DIR # For small arrays ListDirectory "${PWD}" CUR_DIR ListArray CUR_DIR declare -a DIR_DIG DigestFile CUR_DIR DIR_DIG echo "The new \"name\" (checksum) for ${CUR_DIR[9]} is ${DIR_DIG[0]}" declare -a DIR_ENT # BIG_DIR # For really big arrays - use a temporary file in ramdisk # BIG-DIR # ListDirectory -of "${CUR_DIR[11]}/*" "/tmpfs/junk2" ListDirectory "${CUR_DIR[11]}/*" DIR_ENT declare -a DIR_IDX # BIG-DIR # IndexList -if "/tmpfs/junk2" DIR_IDX IndexList DIR_ENT DIR_IDX declare -a IDX_DIG # BIG-DIR # DIR_ENT=( $(cat /tmpfs/junk2) ) # BIG-DIR # DigestFile -if /tmpfs/junk2 IDX_DIG DigestFile DIR_ENT IDX_DIG # Small (should) be able to parallize IndexList & DigestFile # Large (should) be able to parallize IndexList & DigestFile & the assignment echo "The \"name\" (checksum) for the contents of ${PWD} is ${IDX_DIG[0]}" declare -a FILE_LOC LocateFile ${PWD} FILE_LOC ListArray FILE_LOC exit 0
Stéphane Chazelas demonstrates object-oriented programming in a Bash script.
Mariusz Gniazdowski contributed a hash library for use in scripts.
Example A-20. Library of hash functions
# Hash: # Hash function library # Author: Mariusz Gniazdowski <mariusz.gn-at-gmail.com> # Date: 2005-04-07 # Functions making emulating hashes in Bash a little less painful. # Limitations: # * Only global variables are supported. # * Each hash instance generates one global variable per value. # * Variable names collisions are possible #+ if you define variable like __hash__hashname_key # * Keys must use chars that can be part of a Bash variable name #+ (no dashes, periods, etc.). # * The hash is created as a variable: # ... hashname_keyname # So if somone will create hashes like: # myhash_ + mykey = myhash__mykey # myhash + _mykey = myhash__mykey # Then there will be a collision. # (This should not pose a major problem.) Hash_config_varname_prefix=__hash__ # Emulates: hash[key]=value # # Params: # 1 - hash # 2 - key # 3 - value function hash_set { eval "${Hash_config_varname_prefix}${1}_${2}=\"${3}\"" } # Emulates: value=hash[key] # # Params: # 1 - hash # 2 - key # 3 - value (name of global variable to set) function hash_get_into { eval "$3=\"\$${Hash_config_varname_prefix}${1}_${2}\"" } # Emulates: echo hash[key] # # Params: # 1 - hash # 2 - key # 3 - echo params (like -n, for example) function hash_echo { eval "echo $3 \"\$${Hash_config_varname_prefix}${1}_${2}\"" } # Emulates: hash1[key1]=hash2[key2] # # Params: # 1 - hash1 # 2 - key1 # 3 - hash2 # 4 - key2 function hash_copy { eval "${Hash_config_varname_prefix}${1}_${2}\ =\"\$${Hash_config_varname_prefix}${3}_${4}\"" } # Emulates: hash[keyN-1]=hash[key2]=...hash[key1] # # Copies first key to rest of keys. # # Params: # 1 - hash1 # 2 - key1 # 3 - key2 # . . . # N - keyN function hash_dup { local hashName="$1" keyName="$2" shift 2 until [ ${#} -le 0 ]; do eval "${Hash_config_varname_prefix}${hashName}_${1}\ =\"\$${Hash_config_varname_prefix}${hashName}_${keyName}\"" shift; done; } # Emulates: unset hash[key] # # Params: # 1 - hash # 2 - key function hash_unset { eval "unset ${Hash_config_varname_prefix}${1}_${2}" } # Emulates something similar to: ref=&hash[key] # # The reference is name of the variable in which value is held. # # Params: # 1 - hash # 2 - key # 3 - ref - Name of global variable to set. function hash_get_ref_into { eval "$3=\"${Hash_config_varname_prefix}${1}_${2}\"" } # Emulates something similar to: echo &hash[key] # # That reference is name of variable in which value is held. # # Params: # 1 - hash # 2 - key # 3 - echo params (like -n for example) function hash_echo_ref { eval "echo $3 \"${Hash_config_varname_prefix}${1}_${2}\"" } # Emulates something similar to: $$hash[key](param1, param2, ...) # # Params: # 1 - hash # 2 - key # 3,4, ... - Function parameters function hash_call { local hash key hash=$1 key=$2 shift 2 eval "eval \"\$${Hash_config_varname_prefix}${hash}_${key} \\\"\\\$@\\\"\"" } # Emulates something similar to: isset(hash[key]) or hash[key]==NULL # # Params: # 1 - hash # 2 - key # Returns: # 0 - there is such key # 1 - there is no such key function hash_is_set { eval "if [[ \"\${${Hash_config_varname_prefix}${1}_${2}-a}\" = \"a\" && \"\${${Hash_config_varname_prefix}${1}_${2}-b}\" = \"b\" ]] then return 1; else return 0; fi" } # Emulates something similar to: # foreach($hash as $key => $value) { fun($key,$value); } # # It is possible to write different variations of this function. # Here we use a function call to make it as "generic" as possible. # # Params: # 1 - hash # 2 - function name function hash_foreach { local keyname oldIFS="$IFS" IFS=' ' for i in $(eval "echo \${!${Hash_config_varname_prefix}${1}_*}"); do keyname=$(eval "echo \${i##${Hash_config_varname_prefix}${1}_}") eval "$2 $keyname \"\$$i\"" done IFS="$oldIFS" } # NOTE: In lines 103 and 116, ampersand changed. # But, it doesn't matter, because these are comment lines anyhow.
Here is an example script using the foregoing hash library.
Example A-21. Colorizing text using hash functions
#!/bin/bash # hash-example.sh: Colorizing text. # Author: Mariusz Gniazdowski <mariusz.gn-at-gmail.com> . Hash.lib # Load the library of functions. hash_set colors red "\033[0;31m" hash_set colors blue "\033[0;34m" hash_set colors light_blue "\033[1;34m" hash_set colors light_red "\033[1;31m" hash_set colors cyan "\033[0;36m" hash_set colors light_green "\033[1;32m" hash_set colors light_gray "\033[0;37m" hash_set colors green "\033[0;32m" hash_set colors yellow "\033[1;33m" hash_set colors light_purple "\033[1;35m" hash_set colors purple "\033[0;35m" hash_set colors reset_color "\033[0;00m" # $1 - keyname # $2 - value try_colors() { echo -en "$2" echo "This line is $1." } hash_foreach colors try_colors hash_echo colors reset_color -en echo -e '\nLet us overwrite some colors with yellow.\n' # It's hard to read yellow text on some terminals. hash_dup colors yellow red light_green blue green light_gray cyan hash_foreach colors try_colors hash_echo colors reset_color -en echo -e '\nLet us delete them and try colors once more . . .\n' for i in red light_green blue green light_gray cyan; do hash_unset colors $i done hash_foreach colors try_colors hash_echo colors reset_color -en hash_set other txt "Other examples . . ." hash_echo other txt hash_get_into other txt text echo $text hash_set other my_fun try_colors hash_call other my_fun purple "`hash_echo colors purple`" hash_echo colors reset_color -en echo; echo "Back to normal?"; echo exit $? # On some terminals, the "light" colors print in bold, # and end up looking darker than the normal ones. # Why is this?
An example illustrating the mechanics of hashing, but from a different point of view.
Example A-22. More on hash functions
#!/bin/bash # $Id: ha.sh,v 1.2 2005/04/21 23:24:26 oliver Exp $ # Copyright 2005 Oliver Beckstein # Released under the GNU Public License # Author of script granted permission for inclusion in ABS Guide. # (Thank you!) #---------------------------------------------------------------- # pseudo hash based on indirect parameter expansion # API: access through functions: # # create the hash: # # newhash Lovers # # add entries (note single quotes for spaces) # # addhash Lovers Tristan Isolde # addhash Lovers 'Romeo Montague' 'Juliet Capulet' # # access value by key # # gethash Lovers Tristan ----> Isolde # # show all keys # # keyshash Lovers ----> 'Tristan' 'Romeo Montague' # # # Convention: instead of perls' foo{bar} = boing' syntax, # use # '_foo_bar=boing' (two underscores, no spaces) # # 1) store key in _NAME_keys[] # 2) store value in _NAME_values[] using the same integer index # The integer index for the last entry is _NAME_ptr # # NOTE: No error or sanity checks, just bare bones. function _inihash () { # private function # call at the beginning of each procedure # defines: _keys _values _ptr # # Usage: _inihash NAME local name=$1 _keys=_${name}_keys _values=_${name}_values _ptr=_${name}_ptr } function newhash () { # Usage: newhash NAME # NAME should not contain spaces or dots. # Actually: it must be a legal name for a Bash variable. # We rely on Bash automatically recognising arrays. local name=$1 local _keys _values _ptr _inihash ${name} eval ${_ptr}=0 } function addhash () { # Usage: addhash NAME KEY 'VALUE with spaces' # arguments with spaces need to be quoted with single quotes '' local name=$1 k="$2" v="$3" local _keys _values _ptr _inihash ${name} #echo "DEBUG(addhash): ${_ptr}=${!_ptr}" eval let ${_ptr}=${_ptr}+1 eval "$_keys[${!_ptr}]=\"${k}\"" eval "$_values[${!_ptr}]=\"${v}\"" } function gethash () { # Usage: gethash NAME KEY # Returns boing # ERR=0 if entry found, 1 otherwise # That's not a proper hash -- #+ we simply linearly search through the keys. local name=$1 key="$2" local _keys _values _ptr local k v i found h _inihash ${name} # _ptr holds the highest index in the hash found=0 for i in $(seq 1 ${!_ptr}); do h="\${${_keys}[${i}]}" # Safer to do it in two steps, eval k=${h} #+ especially when quoting for spaces. if [ "${k}" = "${key}" ]; then found=1; break; fi done; [ ${found} = 0 ] && return 1; # else: i is the index that matches the key h="\${${_values}[${i}]}" eval echo "${h}" return 0; } function keyshash () { # Usage: keyshash NAME # Returns list of all keys defined for hash name. local name=$1 key="$2" local _keys _values _ptr local k i h _inihash ${name} # _ptr holds the highest index in the hash for i in $(seq 1 ${!_ptr}); do h="\${${_keys}[${i}]}" # Safer to do it in two steps, eval k=${h} #+ especially when quoting for spaces. echo -n "'${k}' " done; } # ----------------------------------------------------------------------- # Now, let's test it. # (Per comments at the beginning of the script.) newhash Lovers addhash Lovers Tristan Isolde addhash Lovers 'Romeo Montague' 'Juliet Capulet' # Output results. echo gethash Lovers Tristan # Isolde echo keyshash Lovers # 'Tristan' 'Romeo Montague' echo; echo exit 0 # Exercise: # -------- # Add error checks to the functions.
Now for a script that installs and mounts those cute USB keychain solid-state "hard drives."
Example A-23. Mounting USB keychain storage devices
#!/bin/bash # ==> usb.sh # ==> Script for mounting and installing pen/keychain USB storage devices. # ==> Runs as root at system startup (see below). # ==> # ==> Newer Linux distros (2004 or later) autodetect # ==> and install USB pen drives, and therefore don't need this script. # ==> But, it's still instructive. # This code is free software covered by GNU GPL license version 2 or above. # Please refer to http://www.gnu.org/ for the full license text. # # Some code lifted from usb-mount by Michael Hamilton's usb-mount (LGPL) #+ see http://users.actrix.co.nz/michael/usbmount.html # # INSTALL # ------- # Put this in /etc/hotplug/usb/diskonkey. # Then look in /etc/hotplug/usb.distmap, and copy all usb-storage entries #+ into /etc/hotplug/usb.usermap, substituting "usb-storage" for "diskonkey". # Otherwise this code is only run during the kernel module invocation/removal #+ (at least in my tests), which defeats the purpose. # # TODO # ---- # Handle more than one diskonkey device at one time (e.g. /dev/diskonkey1 #+ and /mnt/diskonkey1), etc. The biggest problem here is the handling in #+ devlabel, which I haven't yet tried. # # AUTHOR and SUPPORT # ------------------ # Konstantin Riabitsev, <icon linux duke edu>. # Send any problem reports to my email address at the moment. # # ==> Comments added by ABS Guide author. SYMLINKDEV=/dev/diskonkey MOUNTPOINT=/mnt/diskonkey DEVLABEL=/sbin/devlabel DEVLABELCONFIG=/etc/sysconfig/devlabel IAM=$0 ## # Functions lifted near-verbatim from usb-mount code. # function allAttachedScsiUsb { find /proc/scsi/ -path '/proc/scsi/usb-storage*' -type f | xargs grep -l 'Attached: Yes' } function scsiDevFromScsiUsb { echo $1 | awk -F"[-/]" '{ n=$(NF-1); print "/dev/sd" substr("abcdefghijklmnopqrstuvwxyz", n+1, 1) }' } if [ "${ACTION}" = "add" ] && [ -f "${DEVICE}" ]; then ## # lifted from usbcam code. # if [ -f /var/run/console.lock ]; then CONSOLEOWNER=`cat /var/run/console.lock` elif [ -f /var/lock/console.lock ]; then CONSOLEOWNER=`cat /var/lock/console.lock` else CONSOLEOWNER= fi for procEntry in $(allAttachedScsiUsb); do scsiDev=$(scsiDevFromScsiUsb $procEntry) # Some bug with usb-storage? # Partitions are not in /proc/partitions until they are accessed #+ somehow. /sbin/fdisk -l $scsiDev >/dev/null ## # Most devices have partitioning info, so the data would be on #+ /dev/sd?1. However, some stupider ones don't have any partitioning #+ and use the entire device for data storage. This tries to #+ guess semi-intelligently if we have a /dev/sd?1 and if not, then #+ it uses the entire device and hopes for the better. # if grep -q `basename $scsiDev`1 /proc/partitions; then part="$scsiDev""1" else part=$scsiDev fi ## # Change ownership of the partition to the console user so they can #+ mount it. # if [ ! -z "$CONSOLEOWNER" ]; then chown $CONSOLEOWNER:disk $part fi ## # This checks if we already have this UUID defined with devlabel. # If not, it then adds the device to the list. # prodid=`$DEVLABEL printid -d $part` if ! grep -q $prodid $DEVLABELCONFIG; then # cross our fingers and hope it works $DEVLABEL add -d $part -s $SYMLINKDEV 2>/dev/null fi ## # Check if the mount point exists and create if it doesn't. # if [ ! -e $MOUNTPOINT ]; then mkdir -p $MOUNTPOINT fi ## # Take care of /etc/fstab so mounting is easy. # if ! grep -q "^$SYMLINKDEV" /etc/fstab; then # Add an fstab entry echo -e \ "$SYMLINKDEV\t\t$MOUNTPOINT\t\tauto\tnoauto,owner,kudzu 0 0" \ >> /etc/fstab fi done if [ ! -z "$REMOVER" ]; then ## # Make sure this script is triggered on device removal. # mkdir -p `dirname $REMOVER` ln -s $IAM $REMOVER fi elif [ "${ACTION}" = "remove" ]; then ## # If the device is mounted, unmount it cleanly. # if grep -q "$MOUNTPOINT" /etc/mtab; then # unmount cleanly umount -l $MOUNTPOINT fi ## # Remove it from /etc/fstab if it's there. # if grep -q "^$SYMLINKDEV" /etc/fstab; then grep -v "^$SYMLINKDEV" /etc/fstab > /etc/.fstab.new mv -f /etc/.fstab.new /etc/fstab fi fi exit 0
Converting a text file to HTML format.
Example A-24. Converting to HTML
#!/bin/bash # tohtml.sh [v. 0.2, reldate: 06/26/08, still buggy] # Convert a text file to HTML format. # Author: Mendel Cooper # License: GPL3 # Usage: sh tohtml.sh < textfile > htmlfile # Script can easily be modified to accept source and target filenames. # Assumptions: # 1) Paragraphs in (target) text file are separated by a blank line. # 2) Jpeg images (*.jpg) are located in "images" subdirectory. # In the target file, the image names are enclosed in square brackets, # for example, [image01.jpg]. # 3) Emphasized (italic) phrases begin with a space+underscore #+ or the first character on the line is an underscore, #+ and end with an underscore+space or underscore+end-of-line. # Settings FNTSIZE=2 # Small-medium font size IMGDIR="images" # Image directory # Headers HDR01='<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">' HDR02='<!-- Converted to HTML by ***tohtml.sh*** script -->' HDR03='<!-- script author: M. Leo Cooper <[email protected]> -->' HDR10='<html>' HDR11='<head>' HDR11a='</head>' HDR12a='<title>' HDR12b='</title>' HDR121='<META NAME="GENERATOR" CONTENT="tohtml.sh script">' HDR13='<body bgcolor="#dddddd">' # Change background color to suit. HDR14a='<font size=' HDR14b='>' # Footers FTR10='</body>' FTR11='</html>' # Tags BOLD="<b>" CENTER="<center>" END_CENTER="</center>" LF="<br>" write_headers () { echo "$HDR01" echo echo "$HDR02" echo "$HDR03" echo echo echo "$HDR10" echo "$HDR11" echo "$HDR121" echo "$HDR11a" echo "$HDR13" echo echo -n "$HDR14a" echo -n "$FNTSIZE" echo "$HDR14b" echo echo "$BOLD" # Everything in bold (more easily readable). } process_text () { while read line # Read one line at a time. do { if [ ! "$line" ] # Blank line? then # Then new paragraph must follow. echo echo "$LF" # Insert two <br> tags. echo "$LF" echo continue # Skip the underscore test. else # Otherwise . . . if [[ "$line" =~ "\[*jpg\]" ]] # Is a graphic? then # Strip away brackets. temp=$( echo "$line" | sed -e 's/\[//' -e 's/\]//' ) line=""$CENTER" <img src="\"$IMGDIR"/$temp\"> "$END_CENTER" " # Add image tag. # And, center it. fi fi echo "$line" | grep -q _ if [ "$?" -eq 0 ] # If line contains underscore ... then # =================================================== # Convert underscored phrase to italics. temp=$( echo "$line" | sed -e 's/ _/ <i>/' -e 's/_/<\/i> /' | sed -e 's/^_/<i>/' -e 's/_/<\/i>/' ) # Process only underscores prefixed by space, #+ or at beginning or end of line. # Do not convert underscores embedded within a word! line="$temp" # Slows script execution. Can be optimized? # =================================================== fi echo echo "$line" echo } # End while done } # End process_text () write_footers () # Termination tags. { echo "$FTR10" echo "$FTR11" } # main () { # ========= write_headers process_text write_footers # ========= # } exit $? # Exercises: # --------- # 1) Fixup: Check for closing underscore before a comma or period. # 2) Add a test for the presence of a closing underscore #+ in phrases to be italicized.
Here is something to warm the hearts of webmasters and mistresses: a script that saves weblogs.
Example A-25. Preserving weblogs
#!/bin/bash # archiveweblogs.sh v1.0 # Troy Engel <[email protected]> # Slightly modified by document author. # Used with permission. # # This script will preserve the normally rotated and #+ thrown away weblogs from a default RedHat/Apache installation. # It will save the files with a date/time stamp in the filename, #+ bzipped, to a given directory. # # Run this from crontab nightly at an off hour, #+ as bzip2 can suck up some serious CPU on huge logs: # 0 2 * * * /opt/sbin/archiveweblogs.sh PROBLEM=66 # Set this to your backup dir. BKP_DIR=/opt/backups/weblogs # Default Apache/RedHat stuff LOG_DAYS="4 3 2 1" LOG_DIR=/var/log/httpd LOG_FILES="access_log error_log" # Default RedHat program locations LS=/bin/ls MV=/bin/mv ID=/usr/bin/id CUT=/bin/cut COL=/usr/bin/column BZ2=/usr/bin/bzip2 # Are we root? USER=`$ID -u` if [ "X$USER" != "X0" ]; then echo "PANIC: Only root can run this script!" exit $PROBLEM fi # Backup dir exists/writable? if [ ! -x $BKP_DIR ]; then echo "PANIC: $BKP_DIR doesn't exist or isn't writable!" exit $PROBLEM fi # Move, rename and bzip2 the logs for logday in $LOG_DAYS; do for logfile in $LOG_FILES; do MYFILE="$LOG_DIR/$logfile.$logday" if [ -w $MYFILE ]; then DTS=`$LS -lgo --time-style=+%Y%m%d $MYFILE | $COL -t | $CUT -d ' ' -f7` $MV $MYFILE $BKP_DIR/$logfile.$DTS $BZ2 $BKP_DIR/$logfile.$DTS else # Only spew an error if the file exits (ergo non-writable). if [ -f $MYFILE ]; then echo "ERROR: $MYFILE not writable. Skipping." fi fi done done exit 0
How to keep the shell from expanding and reinterpreting text strings.
Example A-26. Protecting literal strings
#! /bin/bash # protect_literal.sh # set -vx :<<-'_Protect_Literal_String_Doc' Copyright (c) Michael S. Zick, 2003; All Rights Reserved License: Unrestricted reuse in any form, for any purpose. Warranty: None Revision: $ID$ Documentation redirected to the Bash no-operation. Bash will '/dev/null' this block when the script is first read. (Uncomment the above set command to see this action.) Remove the first (Sha-Bang) line when sourcing this as a library procedure. Also comment out the example use code in the two places where shown. Usage: _protect_literal_str 'Whatever string meets your ${fancy}' Just echos the argument to standard out, hard quotes restored. $(_protect_literal_str 'Whatever string meets your ${fancy}') as the right-hand-side of an assignment statement. Does: As the right-hand-side of an assignment, preserves the hard quotes protecting the contents of the literal during assignment. Notes: The strange names (_*) are used to avoid trampling on the user's chosen names when this is sourced as a library. _Protect_Literal_String_Doc # The 'for illustration' function form _protect_literal_str() { # Pick an un-used, non-printing character as local IFS. # Not required, but shows that we are ignoring it. local IFS=$'\x1B' # \ESC character # Enclose the All-Elements-Of in hard quotes during assignment. local tmp=$'\x27'$@$'\x27' # local tmp=$'\''$@$'\'' # Even uglier. local len=${#tmp} # Info only. echo $tmp is $len long. # Output AND information. } # This is the short-named version. _pls() { local IFS=$'x1B' # \ESC character (not required) echo $'\x27'$@$'\x27' # Hard quoted parameter glob } # :<<-'_Protect_Literal_String_Test' # # # Remove the above "# " to disable this code. # # # # See how that looks when printed. echo echo "- - Test One - -" _protect_literal_str 'Hello $user' _protect_literal_str 'Hello "${username}"' echo # Which yields: # - - Test One - - # 'Hello $user' is 13 long. # 'Hello "${username}"' is 21 long. # Looks as expected, but why all of the trouble? # The difference is hidden inside the Bash internal order #+ of operations. # Which shows when you use it on the RHS of an assignment. # Declare an array for test values. declare -a arrayZ # Assign elements with various types of quotes and escapes. arrayZ=( zero "$(_pls 'Hello ${Me}')" 'Hello ${You}' "\'Pass: ${pw}\'" ) # Now list that array and see what is there. echo "- - Test Two - -" for (( i=0 ; i<${#arrayZ[*]} ; i++ )) do echo Element $i: ${arrayZ[$i]} is: ${#arrayZ[$i]} long. done echo # Which yields: # - - Test Two - - # Element 0: zero is: 4 long. # Our marker element # Element 1: 'Hello ${Me}' is: 13 long. # Our "$(_pls '...' )" # Element 2: Hello ${You} is: 12 long. # Quotes are missing # Element 3: \'Pass: \' is: 10 long. # ${pw} expanded to nothing # Now make an assignment with that result. declare -a array2=( ${arrayZ[@]} ) # And print what happened. echo "- - Test Three - -" for (( i=0 ; i<${#array2[*]} ; i++ )) do echo Element $i: ${array2[$i]} is: ${#array2[$i]} long. done echo # Which yields: # - - Test Three - - # Element 0: zero is: 4 long. # Our marker element. # Element 1: Hello ${Me} is: 11 long. # Intended result. # Element 2: Hello is: 5 long. # ${You} expanded to nothing. # Element 3: 'Pass: is: 6 long. # Split on the whitespace. # Element 4: ' is: 1 long. # The end quote is here now. # Our Element 1 has had its leading and trailing hard quotes stripped. # Although not shown, leading and trailing whitespace is also stripped. # Now that the string contents are set, Bash will always, internally, #+ hard quote the contents as required during its operations. # Why? # Considering our "$(_pls 'Hello ${Me}')" construction: # " ... " -> Expansion required, strip the quotes. # $( ... ) -> Replace with the result of..., strip this. # _pls ' ... ' -> called with literal arguments, strip the quotes. # The result returned includes hard quotes; BUT the above processing #+ has already been done, so they become part of the value assigned. # # Similarly, during further usage of the string variable, the ${Me} #+ is part of the contents (result) and survives any operations # (Until explicitly told to evaluate the string). # Hint: See what happens when the hard quotes ($'\x27') are replaced #+ with soft quotes ($'\x22') in the above procedures. # Interesting also is to remove the addition of any quoting. # _Protect_Literal_String_Test # # # Remove the above "# " to disable this code. # # # exit 0
But, what if you want the shell to expand and reinterpret strings?
Example A-27. Unprotecting literal strings
#! /bin/bash # unprotect_literal.sh # set -vx :<<-'_UnProtect_Literal_String_Doc' Copyright (c) Michael S. Zick, 2003; All Rights Reserved License: Unrestricted reuse in any form, for any purpose. Warranty: None Revision: $ID$ Documentation redirected to the Bash no-operation. Bash will '/dev/null' this block when the script is first read. (Uncomment the above set command to see this action.) Remove the first (Sha-Bang) line when sourcing this as a library procedure. Also comment out the example use code in the two places where shown. Usage: Complement of the "$(_pls 'Literal String')" function. (See the protect_literal.sh example.) StringVar=$(_upls ProtectedSringVariable) Does: When used on the right-hand-side of an assignment statement; makes the substitions embedded in the protected string. Notes: The strange names (_*) are used to avoid trampling on the user's chosen names when this is sourced as a library. _UnProtect_Literal_String_Doc _upls() { local IFS=$'x1B' # \ESC character (not required) eval echo $@ # Substitution on the glob. } # :<<-'_UnProtect_Literal_String_Test' # # # Remove the above "# " to disable this code. # # # _pls() { local IFS=$'x1B' # \ESC character (not required) echo $'\x27'$@$'\x27' # Hard quoted parameter glob } # Declare an array for test values. declare -a arrayZ # Assign elements with various types of quotes and escapes. arrayZ=( zero "$(_pls 'Hello ${Me}')" 'Hello ${You}' "\'Pass: ${pw}\'" ) # Now make an assignment with that result. declare -a array2=( ${arrayZ[@]} ) # Which yielded: # - - Test Three - - # Element 0: zero is: 4 long # Our marker element. # Element 1: Hello ${Me} is: 11 long # Intended result. # Element 2: Hello is: 5 long # ${You} expanded to nothing. # Element 3: 'Pass: is: 6 long # Split on the whitespace. # Element 4: ' is: 1 long # The end quote is here now. # set -vx # Initialize 'Me' to something for the embedded ${Me} substitution. # This needs to be done ONLY just prior to evaluating the #+ protected string. # (This is why it was protected to begin with.) Me="to the array guy." # Set a string variable destination to the result. newVar=$(_upls ${array2[1]}) # Show what the contents are. echo $newVar # Do we really need a function to do this? newerVar=$(eval echo ${array2[1]}) echo $newerVar # I guess not, but the _upls function gives us a place to hang #+ the documentation on. # This helps when we forget what a # construction like: #+ $(eval echo ... ) means. # What if Me isn't set when the protected string is evaluated? unset Me newestVar=$(_upls ${array2[1]}) echo $newestVar # Just gone, no hints, no runs, no errors. # Why in the world? # Setting the contents of a string variable containing character #+ sequences that have a meaning in Bash is a general problem in #+ script programming. # # This problem is now solved in eight lines of code #+ (and four pages of description). # Where is all this going? # Dynamic content Web pages as an array of Bash strings. # Content set per request by a Bash 'eval' command #+ on the stored page template. # Not intended to replace PHP, just an interesting thing to do. ### # Don't have a webserver application? # No problem, check the example directory of the Bash source; #+ there is a Bash script for that also. # _UnProtect_Literal_String_Test # # # Remove the above "# " to disable this code. # # # exit 0
This interesting script helps hunt down spammers.
Example A-28. Spammer Identification
About AquaClusters Privacy Policy Support Version - 19.0.2-4 AquaFold, Inc Copyright © 2007-2017